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General dimensional and similarity arguments are applied to derive a heat and 
mass transfer law for fully turbulent flow along a rough wall. The derivation is 
quite analogous to Millikan’s (1939) derivation of a skin-friction law for smooth- 
and rough-wall flows and to the derivation of the heat and mass transfer law for 
smooth-wall flows by Fortier (1968a, b )  and Kader & Yaglom (1970, 1972). 

The equations derived for the heat or mass transfer coefficient (Stanton number) 
C, and Nusselt number N u  include the constant term p of the logarithmic 
equation for the mean temperature or concentration of a diffusing substance. 
This term is a function of the Prandtl number, the dimensionless height of wall 
protrusions and of the parameters describing the shapes and spatial distribution 
of the protrusions. The general form of the function f l  is roughly estimated by 
a simplified analysis of the eddy-diffusivity behaviour in the proximity of the 
wall (in the gaps between the wall protrusions). Approximate values of the 
numerical coefficients of the equation for f l  are found from measurements of the 
mean velocity and temperature (or concentration) above rough walls. The equa- 
tion agrees satisfactorily with all the available experimental data. It is noted 
that the results obtained indicate that roughness affects heat and mass transfer 
in two ways: it produces the additional disturbances augmenting the heat and 
mass transfer and simultaneously retards the fluid flow in the proximity of the 
wall. This second effect leads in some cases to deterioration of heat and mass 
transfer from a rough wall as compared with the case of a smooth wall a t  the 
same values of the Reynolds and Prandtl numbers. 

1. Introduction 
At  least several dozen published papers are devoted to the experimental 

investigation of turbulent heat transfer in pipes with rough walls (some of them 
will be referred to and analysed below). Recently some studies were also pub- 
lished which contain a theoretical analysis of heat and mass transfer between 
a rough wall and a turbulent fluid flow based on specific eddy-viscosity and 
eddy-thermal-diffusivity assumptions (e.g. Jayatilleke 1969; Millionshchikov 
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1971). In this paper another approach to the problem will be developed; it is 
applicable at  high enough Reynolds and PBclet numbers and is based primarily 
on general dimensional and similarity arguments. This approach is quite 
analogous to the well-known method of Izakson (1937) and Millikan (1939) for 
deriving the logarithmic velocity profile and logarithmic skin-friction law of 
Prandtl and Nikuradse for turbulent flows in pipes and channels. The same 
method was applied recently by Csanady (1967) and Gill (1967) to the derivation 
of the skin-friction law for the turbulent Ekman boundary layer in a rotating 
fluid, and by Fortier (1968a, b)  and Kader & Yaglom (1970,1972) to the deriva- 
tion of the heat and mass transfer law for turbulent flows along a smooth wall 
(see also Monin & Yaglom 1971, §§ 5.7 and 6.6). The close relation of this method 
to the general 'asymptotic matching ' principle was analysed by Blackadar & 
Tennekes (1968), Tennekes (1968), Yajnik (1970) and Afzal & Yajnik (1971). 

It is also possible to apply similar arguments in the investigation of the law 
of heat and mass transfer between a rough wall and a fully turbulent fluid flow 
(this possibility was emphasized, for example, by Fortier 1968b). However, the 
unknown value of one particular function of several variables must be deter- 
mined in order to obtain an explicit expression for heat and mass transfer co- 
efficients in such a way. The approximate evaluation of this function with the 
aid of existing data and some rough physical reasoning will be considered in 3 2 
of this paper. The value found for this function implies quite definite predictions 
for the law of heat and mass transfer between a rough wall and a fully turbulent 
fluid flow. The law so derived will be compared in the closing section of the paper 
with numerous experimental data available on turbulent heat transfer in rough 
pipes. 

2. Heat and mass transfer law for flow along a completely rough wall 
Let us consider turbulent parallel flow along a homogeneous rough wall in 

a plane channel, circular pipe or boundary layer along a flat plate without a 
longitudinal pressure gradient. We shall assume that the wall has a constant 
temperature 8, different from the temperature of the fluid.? Then the mean 
temperature profile O(y) near the wall (but above the tops of wall protrusions) 
will be described by the general temperature wall law 

8, - &Y) = 8, m+, Pr, h,, g1, g 2 ,  . . . ) 7  (1) 

where 8, = jw/cppu* is the so-called heat-flux temperature (or friction temper- 
ature), u, = (~,/p)s the friction velocity, 7, andj, wall values of the shear stress 

f For definiteness we shall henceforth talk, as a rule, about heat transfer only and 
therefore call the quantity 8 temperature. However, all the subsequent reasoning can also 
be applied to mass transfer. In  this case 8 should of course be the concentration of the 
transferred substance and correspondingly j ,  and x should be a wall mass flux and a 
molecular mass diffusivity, while c p  must be replaced by one. 

Let us also note that the condition 8, = constant may be replaced by j ,  = constant 
since such a replacement does not change the mass transfer in sll the cases with the 
exception of the case of Pr < 1, which we shall not consider below (cf., for example, 
Siege1 & Sparrow 1960; Kays 1966). 
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and heat flux, p and cp  the fluid density and its specific heat, y+ = hu,/v, 
h+ = hu,/v, y the distance from the wall, h the mean height of roughness elements 
(‘wall protrusions’), Pr = v / x  the Prandtl number, v and x the molecular vis- 
cosity and molecular thermal diffusivity and vl, vz, . . . , dimensionless parameters 
which characterize the shapes of roughness elements, their distribution on the wall 
and (in cases when not all the roughness elements are identical) the scatter of 
their sizes and shapes. (H. B. Squire (1 951) was apparently the first to state this 
Iaw for the case of a smooth walI.) SimiIarIy, the mean temperature profile in 
the core of the flow (or in the outer part of the boundary layer) is described by 
the temperature defect law if the numbers Re = L U / v  and Pe = L U / x  = RePr 
are high enough, where L and U are typical length and velocity scales of the flow. 
This defect law has the form 

O(Y) - 4 = d*$l(rlL (2) 

where O1 = O(L), 7 = y/L, and L is the half-width of the channel, pipe radius or 
boundary-layer thickness. (This law was first stated by W. Squire in 1959 in a 
slightly different form.) Now let us assume that the Reynolds and PQclet numbers 
are also so high that not only are laws (1) and (2) valid for corresponding values 
of y but there is also an ‘overlap interval’ of y values in which both the laws 
apply simultaneously. Then the arguments which were formulated by Izakson 
(1937) for the turbulent velocity profile can be applied to the temperature profile 
too. These arguments imply that both the functions $ and must be logarithmic 
in the overlap interval: 

(3) I $@+, Pr, h,, Ul, vz, ... ) = a h  y+ + P W ,  h,, Gl, vz, . . .), 
$l(rl) = -alnrl+P1 

(cf. Monin & Yaglom 1971, 345.5 and 5.7).  If wenow substitute (3) in (1) and (2) 
and then add the results we obtain 

(4) 
Ch = ( 8 C r P  

a l n [ R e ( ~ ~ ~ ) ~ ] + P ( P r , h + , v ~ , ( ~ ~ ,  ... )+P1’ 
where ch = j,/c,pU(O,- 0,) is the heat transfer coefficient (Stanton number) 
and cf = 2(u,/ U)2  is the skin-friction coefficient. Equation (4) represents a general 
law for heat (or mass) transfer between a rough wall and a turbulent fluid flow. 

The numerical coefficients a and P1 in (3) and (4) do not depend on the specific 
features of the wall, i.e. they are the same for any smooth or rough wall. The 
determination of their values from the available data was discussed in detail by 
Kader & Yaglom (1972) in relation to the problem of the turbulent heat and mass 
transfer law for smooth-wall flows. According to the information contained in 
the cited paper the available measurements of the temperature profile and the 
wall heat flux j, in various turbulent wall flows imply the estimate a M 2.12. 
The accuracy of this estimate is close to the accuracy of the well-knom estimate 
A = l/k M 2.5, i.e. k M 0.4, where A is the leading coefficient in the logarithmic 
equation for the mean velocity and k is von Kkm&n’s constant. The value of the 
coefficient bl will be different for flows in circular pipes, plane channels and 
boundary layers along a flat plate. For pipe and channel flows P1 is relatively 
close to zero. Further, we shall follow Kader & Yaglom (1972) and assume that 
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M 0.5, but experimental evidence supporting such a choice is not very reliable 
and therefore a t  present it is also possible to assume that p1 = 0 for pipe and 
channel flows.? Moreover there were no data at  all on the value of p1 for boundary- 
layer flows until quite recently. Therefore Kader & Yaglom (1972) recommended 
use of the value ”N 2.35, which follows from the available data on the velocity 
defect in the outer part of a turbulent boundary layer if Reynolds’ analogy is 
supposed to be valid. This preliminary estimate turns out to agree quite well 
with the recent direct measurements by Rlanciauskas, Pedizius & hkauskas 
(1971) and by Blanciauskas & Driiius (1971). As regards the value of the co- 
efficient P(Pr, h,, g1, gZ, . . .), it depends essentially on the wall roughness and 
therefore the corresponding smooth-wall estimate of Kader & Yaglom (1970, 
1972) cannot be applied to the study of the rough-wall case. 

In  this section we shall consider only the case of a dynamically completely 
rough wall, i.e. we shall assume that h, is high enough (namely h, > 100). It 
is known that in this case the mean velocity U(y) above the wall protrusions 
does not depend on molecular viscosity. Hence the constant term B of the 
logarithmic equation for the mean velocity 

U(Y) = u*(A In Y+ + B)  

B = -Alnh ,+B’( (~~,c~~, . . . )  = -AIn(hOu*/v), 

(5) 

(6) 

where h, = hexp ( - B’/A) is the so-called wall roughness parameter (see, e.g. 
Monin & Yaglom 1971, $5.4). Equation (6) indicates that the momentum transfer 
from the flow to the wall is generated by the pressure differences between the 
fronts and backs of the protrusions (i.e. by their direct dynamical resistance), 
and not by viscous friction due to molecular viscosity. On the other hand the 
heat (or mass) exchange between any wall and fluid flow can be produced only by 
molecular diffusion; hence it is quite inadmissible to  neglect the molecular dif- 
fusivity when the heat or mass transfer is considered. Correspondingly O(y) will 
depend on x even a t  y 

As was mentioned above, we shall restrict ourselves to the case of Pr 2 1, 
i.e. we shall not consider heat transfer in rough-wall flows of liquid metals (since 
a t  present there are no experimental data on such heat transfer). Moreover we 
shall follow Levich (1962, $30) and Owen & Thomson (1963) and assume that 
the roughness elements are closely spaced so that their sizes and shapes fully 
determine the flow in gaps between adjacent protrusions (forming the main part 
of the wall area). It was suggested by Levich that the order of magnitude of the 
thickness S, of the viscous sublayer in the gaps can be roughly estimated under 
these conditions with the aid of the following reasoning. Since it is supposed that 
the flow between wall protrusions and above their tops is fully determined by the 
protrusions themselves, the flow at a y of the order his characterized by the length 
scale h and the ordinary velocity scale u*. Hence the mean velocity U(y) a t  

x 0.5 was in fact chosen by the authors in their previous work to 
achieve a better agreement with the heat transfer measurements in liquid metals, which 
will not be considered in the present paper. 

takes the form 

h, i.e. /3 will depend on Pr. 

t The value 
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the height y = h is of order u* and the eddy viscosity eM in the upper part of 
gaps between the wall protrusions is proportional to u* h. Moreover, 

%&J/dy = 4, 
hence U(y) - u,y/h in the upper part of the gaps. Now the thickness S, of the 
viscous sublayer can be determined by the usual condition that the corre- 
sponding Reynolds number Resv = S,U(S,)/v is of order unity. This leads to 
Levich’s result 

(7) 8, N (vh/u,)* = h/h t ,  

which agrees also with the relation given by the way on p. 333 of Owen & 
Thomson (1963). 

The molecular effects are of no importance above the viscous sublayer (i.e. a t  
y > 8,) in the case Pr 2 1 being examined. Therefore the dependence of p on 
Pr must be fully determined by the value of the difference 8, - e(S,). The accurate 
evaluation of this difference requires a physically realistic and mathematically 
treatable detailed model of the fluid motion in the gaps between the wall pro- 
trusions but the construction of such a model seems to be an impossible task. 
(Qualitative descriptions of the motion were proposed, for example, by Owen & 
Thomson (1963) and Dipprey & Sabersky (1963) and they are consistent with 
the arguments below.) This is apparently the reason why Owen & Thomson 
(1963) and Jayatilleke (1969), who needed the value of Ow- e(8,) in their studies, 
did not try to determine it theoretically, but used a simple empirical equation of 
the form 

0, - @(a,) = bft?, h$ Prq. (8) 

Here b, p and q are numerical constants (p and q are universal but b may depend 
on the shapes and distribution of the protrusions, i.e. on nl, c2, ...). The values 
of these constants were found in both the above studies from the analysis of 
inevitably limited and rather scattered experimental data; according to Owen & 
Thomson p = 0.45 and q = 0.8, while according to Jayatilleke p = 0.359 and 
q = 0.695. However the thickness of the sublayer relevant to equation (8) was 
not stated clearly enough in these studies and the attempt at  physical interpreta- 
tion of their values ofp and q in the closing section of Owen & Thomson (1963) does 
not seem to be correct (it is based on the implausible assumption that h and u* 
are appropriate length and velocity scales not only in the upper part of the gaps 
but also in the sublayer of molecular transfer). Therefore we propose another 
approach to the rough estimation of the form of the dependence of 6, - Q6,) 
on h, and Pr. This approach leads t o  an equation which is related to (7) with quite 
definite values of p and q and agrees reasonably well with all the available 
experimental data. 

The subsequent arguments do not require knowledge of the details of the 
fluid motion in the gaps between wall protrusions but are based on more formal 
considerations but forward by Levich (1962, chap. 3) and also used by Kader & 
Yaglom (1970, 1972) for the analysis of turbulent heat and mass transfer at 
smooth walls. The main point is that all the eddy diffusivities (i.e. the eddy 
viscosity eM and eddy diffusivity for heat or matter eH)  are equal to zero on the 



606 A .  M .  Yaglom and B. A .  Kader 

wall and must decrease as a power of y (let us say as ym) when y -+ 0. From the 
continuity equation we must have m 2 3 (cf. Monin & Yaglom 1971, 3 5.3). Since 
there are no physical reasons implying that m > 3 it is natural to assume that 
m = 3 and such an assumption is also confirmed by almost all recent experi- 
mental data (see Monin & Yaglom 1971, $ 5 . 7 ;  Kader & Aronov 1970). Therefore 
we shall assume that eL+f = a, vy; and e,  = a, vy", where a, and aH are numeri- 
cal coefficients. a,, and a, are universal constants in smooth-wall flows and they 
determine the thickness of the viscous sublayer and the sublayer of molecular 
diffusion since g M  = v and e, = x at the upper boundary of these sublayers 
(according t o  Kader & Yaglom (1972) both a,, and a, are close to 0.001 over a 
smooth wall). However, in the case of a completely rough wall it is necessary to 
take into account the fact that wall protrusions significantly decelerate the flow 
in gaps. Therefore the velocity in the gaps must be appreciably smaller and the 
turbulent exchange appreciably weaker than a t  the same height above a smooth 
wall. This leads to the conclusion that aM and aH must depend on h, and decrease 
with increasing h, in the case of a rough wall. It seems natural to suppose that 

and e, are of the same order and proportional to each other since both of 
them characterize the vertical turbulent transfer produced by fluctuations of 
dynamical origin. Then it is possible to estimate the dependence of aM and aH 
on h, from the requirement that both eM and eH be of order v at the height S,,. 
It follows from this that a, N h,) and aH N h;*. Hence E ,  = a&vh$ y$ for 
y < S,, where a& does not depend on h, (but may depend on the parameters 
gl, gZ, . . . , describing the shapes and the distribution of the protrusions). 

If Pr M 1 then x dominates the eddy diffusivity eH in the whole layer 0 < y < S, 
(or at least in the main part of this layer) and therefore the order of the difference 
6, - B(S,) can be estimated by solving the molecular diffusion equation 

- cp PX dWy = j ,  
for 0 < y < 6. This leads to the conclusion that 0,-6(6,) N 8,ht when Pr z 1, 
which was also found in the same way by Owen & Thomson (1963, p. 333). 
However the analysis of the situation when Pr is significantly different from 
unity (i.e. the estimate of 6,--8(S,,) for the limiting case of Pr 1) cannot be 
achieved without taking into account the turbulent flux determined by the eddy 
diffusivity E,. If Pr 9 1 then the molecular diffusivity dominates the eddy 
diffusivity only within a thin sublayer of molecular transfer. The thickness Sm 
of this sublayer is determined by the condition eH(Sm) = x,  i.e. 

a k v h $ ( S n L ~ , / ~ ) 3  = x and S, N h/h$Pr-+ = S,Pr-*. 

However, a t  S, < y < 8, the eddydiffusivity dominates the molecular diffusivity. 
Hence to  estimate 6, - 6(S,) we must either neglect the eddy diffusivity within 
the molecular diffusivity sublayer and the molecular diffusivity above it and 
assume that - xdeldy = j,/c,p for 0 < y < Sm and - E,  dO/dy = j&,p for 
Sm < y < S,, or follow Kader (1966) and assume that -(x+eH)d6/dy = j,/c,p 
for the whole layer 0 < y < S,. Both these assumptions lead to the same result 
of the form 

6,-6(S,) = 6,ht/(b;Pr*-bL), (9) 
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where b; and b; are numerical coeEcients which may depend on cr,, cr2, . . . (cf. the 
similar derivation of the smooth-wall equation p z b, Pr* - b, in the paper by 
Kader & Yaglom (1972), where it is also shown that available experimental data 
agree well with this equation if b, = 12.5 and b, = 6).7 Equation (9) agrees with 
the result that 8, - 8(8,) N 8, h i  when Pr z 1. It suggests an approximate de- 
pendence of 8, - @(a,) on Pr and h, for all P r  2 I and h+ > 100 which does not 
differ too much from the empirical equations of the form (8) proposed by Owen & 
Thomson (1963) and by Jayatilleke (1969). 

Above the viscous sublayer (i.e. a t  y > 8,) we may neglect the molecular 
diffusivities v and x, and the eddy diffusivities eM and eH are here of the same 
order. Hence the vertical variation of the mean temperature in the layer above 
the viscous sublayer will be approximately proportional to the vertical variation 
of the mean velocity. If  we assume that the turbulent Prandtlnumber Pr, = enf/eH 
within the entire buffer layer between the upper boundary of the viscous sublayer 
and the lower boundary of the logarithmic region takes the same constant value 
aA = a / k  z 0.85 as it takes within the logarithmic region, then we find that the 
variation of the dimensionless temperature 8+(y) = [Ow - S(y)]/O, in the layer 
from y = 8, until any height y in the logarithmic region differs from the corre- 
sponding variation of the dimensionless velocity U+(y) = U ( y ) / u ,  by only the 
constant factor a/A. Having combined this fact with (9) we obtain for the 
constant term pin the logarithmic temperature equation the following expression: 

p = h$(b;Pr*-bL)-a(lnh,-B'/A), (10) 

where A = l / k  and B' have the same meaning as in (5) and (6).  However there is 
in fact no reason to suppose that Pr, is strictly constant within the entire buffer 
layer and logarithmic region; this last circumstance leads to the replacement of 
(10) by the slightly more general equation 

,8 = h%,(b;Pr*-b;)-alnh++C, (10') 

where C is a new numerical coefficient which may depend on the parameters 
crl, cr2, . .., and the combination AC/a may differ (but not too much) from the 
coefficient B' in (6). 

If we substitute (10') into (4) and take into account the fact that 

Re(&)$ = LuJv and h, = hu,/v, 

7 Let us emphasize that in (8) j ,  denotes the real flux from a unit area of the wall 
(in the gaps between its protrusions), while heat engineers usually compute values of the 
heat transfer coefficient ch using a value of j ,  equal to the ratio of the total heat transfer 
to the total area of the corresponding smooth wall. Thus the replacement of j ,  in (8) 
by j ;  = jS8/Fr, where F7 is the real area of the rough wall and Fa is the area of the similarly 
located smooth wall, may seem to be reasonable. However, such a replacement is un- 
necessary since the ratio FslF,. is determined primarily by u1, u2, . . . , and hence it can be 
included in the coefficients bi and b;. Moreover, the replacement is also not justified since 
it is only relevant when all the area elements of the wall are completely equivalent in 
relation to heat transfer. This last condition is clearly incorrect in the case of a rough wall 
and our arguments me related only to  gaps between the wall protrusions, which are 
supposed t o  produce the main contrihution to the total heat transfer. 
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we obtain the following equation for the coefficient of heat transfer from a com- 
pletely rough wall: 

(11) 
(&A+ 

a ln  ( ~ / h )  + h3+(b; pr+ - b ~ )  + c + pl* Ch = 

In  the next section we shall compare this equation with the available experimental 
data. At this point we merely note that at high enough Re and not too low Pr 
the term proportional to h t  will play the leading role in the denominator of the 
right-hand side of (1 1). This term increases with increasing u* (i.e. withincreasing 
Re) and hence (1 1) implies that the heat transfer from a rough wall a t  high enough 
Re may turn out to be even smaller than the heat transfer from a smooth wall 
a t  the same values of Re and Pr. This last effect evidently must be more noticeable 
for high values of Pr. The conclusion obtained contradicts the usual view on the 
augmentation of heat and mass transfer cmsed by wall roughness (see, for 
example, Kays 1966, $9.18; Bergles 1969). A comparison of it with the data 
will be made at  the end of the next section. 

3. Analysis of the experimental data 
The most direct method of comparing (10’) with the data and determining 

the values of the numerical coefficients in it that best fit the data is based on the 
analysis of measurements of temperature and concentration distributions in 
various developed turbulent flows along completely rough walls. The measured 
dimensionless profiles 8+(y) = [Ow - 8(y)]/8, can be approximated by logarithmic 
equations and their constant terms /3 = 8+( y) - a In y+ can then be compared with 
the values implied by (10’). Unfortunately until now there has been a great lack 
of good-quality measurements of temperature and concentration distributions 
in turbulent rough-wall flows. In particular there are very few data which confirm 
reliably the validity of the logarithmic equation for the mean temperature or 
concentration profile near a rough wall. Moreover, the evaluation of O+(y) requires 
knowledge of the values u* andj, in addition to the values of O(y), but values of 
u* andj, are not given in the most of the experimental studies. However the data 
of Chamberlain (1968) may be used for approximate determination of the co- 
efficients entering (10’). Chamberlain measured the velocity profile and the 
profile of mean concentration of radioactive vapour of ThB or of ordinary water 
vapour together with the corresponding values of u* and 8, in a number of 
laboratory wind-tunnel flows along several artificial completely rough surfaces 
of simple geometry. His paper contains data on the dimensionless velocity U+(5) 
and dimensionless concentration 8+(5) a t  the height y = 5 ern belonging to the 
logarithmic region of the flow together with the values of the height of the wall 
protrusions h, roughness parameter h, = h exp ( - B’/A) and friction velocity u*. 
If, as usual, we assume that A = 2.5 and a = 2.12 (so that Pr, = a/A = 0.85), 
then by virtue of (l), (3), ( 5 )  and (6) we obtain 

Thus if (lo’) is approximately valid then the experimental values of 
8+(5)-0~85U+(5)+2-121n(h/h0) = /3+alnh+. (12) 

= 8+( 5 )  - 0*85U+(5) + 2.1 2 In h/ho 
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must be represented in the form of a sum C, h$ + C,  where C, = b; Pr9 - bh. The 
values of p” computed from Chamberlain’s data are in fact rather scattered, which 
is not surprising since the accuracy of the measurements was not high (Chamber- 
lain himself noticed insufficient accuracy of the measurements of ug and h,,). 
However, on the average the values of p” obtained prove to be described by an 
equation of the form p” = C, h i  + C with a satisfactory accuracy for all values of 
h, = hu,/v from 1 0 2  to 4 x lo3 and all the experimental surfaces sufficiently 
closely covered by roughness elements. The types of such ‘ close-packed ’ rough- 
ness used include the following arrangements: (a )  spheres of diameter 2-54 or 
0.79 cm placed on a flat plate at  the vertices of a rather dense regular lattice, 
(b )  cylinders of diameter 2.54, 0.79 or 0.16cm with their axes perpendicular to 
the stream direction placed regularly and rather densely, ( c )  half-cylinders of 
diameter 5-08 cm placed on a plate perpendicular to the stream direction and 
close to each other, and (d )  wavelike forms of height 0.6 and 5.7 cm and wave- 
length about ten heights covering the entire plate. Evaluation of the coefficients 
C and C, for different types of roughness and two different diffusing substances 
(ThB vapour and water vapour) shows that the values of C do not vary too much 
and that the estimate C z 9.5 can be considered in all the cases as more or less 
satisfactory. On the other hand the values of C, are rather insensitive to changes 
in the underlying rough surface but vary significantly and quite regularly when 
the diffusing substance is changed: the values of C, for ThB vapour (diffusion 
Prandtl number Pr = 2.77) are all considerably higher than the corresponding 
values for water vapour (Pr = 0.62). This fact clearly agrees with the equation 
given above describing the form of the dependence of C, on Pr. It turns out that 
the particular relation C, = 0.55(Pr6 - 0.2) precisely fitting this equation de- 
scribes with sufficient accuracy all the data on p” yielded by Chamberlain’s 
measurements. Hence we see that according to the data considered the values of 
the numerical coefficients b;, b: and C in (10’) prove to be approximately constant 
for a number of quite different types of roughness, although theoretically they 
may depend upon the parameters CT,, (T~, . . . , describing specific features of the 
surface geometry. On the basis of this important circumstance we may suggest 
the single equation 

,8 = 0*55h$.(Prf - 0.2) - 2.12 In h, + 9.5 (13) 

as the first approximation to the constant term ,8 of the logarithmic equation 
describing the mean temperature or concentration distribution at  Pr 2 1 in 
turbulent flows along a great variety of different rough surfaces covered with 
closely spaced roughness elements. Let us also note that the suggested value 9.5 
of the coefficient C in (10’) agrees satisfactorily with the prediction of its relative 
closeness to the value of the combination aB‘/A. In  fact, if the value B‘ = 8.5 
obtained by Nikuradse for the case of homogeneous sand roughness is taken as 
a typical value of B’ then aB‘/A z 0-85B’ z 7.25 and this number has the same 
order of magnitude as the suggested value of C. 

A comparison of the measured values pm of p” = ,8 + 2.12 In h, derived from 
chamberlain’s data with the corresponding calculated values bc obtained with 
the aid of (13) is shown in figure 1. We have also plotted in figure 1 two additional 

F L M  62 39 
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1 oz 2 4 6 8 lo3 2 4 
hf 

FIGURE 1. Ratio bm//?c as a function of h,. Chamberlain’s data for various types of rough- 
ness: 0, spheres; 0, ., cylinders; A. A, half-cylinders; 0, +, waves (open symbols 
refer to diffusion of ThB vapour and closed symbols t o  diffusion of water vapour). Results 
derived from Owen & Thomson’s data: (D ,two-dimensional roughness; 8 ,  three-dimensional 
roughness. x , results of Becirspahic. 

points derived from the data of Becirspahic (1969, 1971) in order to increase 
the variety of flows used for comparison with (13). These data consist of the results 
of mean velocity and temperature profile measurements and measurements of u* 
andj, in two turbulent air flows (at Pr = 0.71) in a rectangular channel, with 
one wall covered with two-dimensional strip roughness of trapezoidal form. 
Despite the fact that the experimental conditions, the value of Pr and the type 
of roughness were here quite different from those for Chamberlain’s measure- 
ments, one can see that the corresponding values of am/Dc do not differ very 
significantly from one. Finally, we plotted in figure 1 the points derived implicitly 
from the mass transfer data of Owen & Thomson (1963). These authors measured 
the rate of vertical mass transfer of camphor in air boundary layers along two 
horizontal rough plates sprayed with a camphor solution. In  these experiments 
the diffusion Prandtl number was equal to 3.2 and the roughness elements 
consisted either of irregularly scattered pyramids or of regular spanwise humps 
forming two-dimensional roughness. Owen & Thomson did not include any 
direct data on camphor concentration profiles, but they suggested an indirect 
method of estimation of the vertical concentration differences in the immediate 
proximity of the wall based on the use of Reynolds’ analogy (i.e the assumption 
that Pr, = 1 everywhere). The same method can also be applied to derive the 
approximate values of p and p” = p + 2.5 In h, for Owen & Thomson’s experiments 
and these approximate values are used as Dm values to be compared with 
values in figure 1. (We now write 2.5 In h, instead of 2.12 In h, in the definition of p” 
because the method of evaluation of p used is based on the assumption that 
a = A = 2-5 and Pr, = a/A = 1.) Of course this treatment of Owen &Thornson’s 
data is rather crude, but the lack of enough more accurate measurements of /3 
justifies the inclusion of these data in figure 1. Although the scatter of points in 
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figure 1 is considerable, the values of &/bC presented clearly cluster near one for 
all the values of Pr and all the types of roughness. 

Since ,8 enterskhe general equation (4) for the heat or mass transfer coefficient 
c,,, the data on heat and mass transfer from a rough wall can also be used to verify 
(13). Such a possibility has been in fact already used in figure 1 in relation to 
boundary-layer mass transfer data of Owen & Thomson. Now we shall exploit 
it more systematically in relation to numerous published studies of heat transfer 
in rough pipes. We must take into consideration, however, the fact that all 
the existing data on such a transfer concern the heat transfer coefficients defined 
in such a manner that the bulk velocity 

o r T, 
A -  

ub = ..J0 ( L - Y )  u(Y)dY 
and the bulk temperature 

(where L is a pipe radius) are used as velocity and temperature scales. In  other 
words all the available information is related to the numbers 

ch = h / c p p u b ( e w - e b )  

or N u  = C, Re Pr and not to the numbers ch = j,/c,p U (8, - 8,) considered above 
in this paper. Since the velocity scale U in (4) and (11) may be chosen quite 
arbitrarily provided that the same scale is used in dimensionless combinations 
Re = U L / v  and cf = ~ ( u * / U ) ~ ,  we can suppose from the very beginning that 
U = Ub. The transformation from ch to ch will be accomplished under such a sup- 
position by multiplication by 

Since the fluid filling gaps between protrusions oontributes very slightly to both 
the bulk velocity and the difference 6,-19~, it can be neglected in the first 
approximation when calculating ub and 6, - 8,. This means that the integration 
from y = 0 to y = L in the definition of ub and Bw - 8, can be approximately 
replaced by integration from y = h to y = L. Moreover, we can use the fact that 
the velocity and temperature defecb laws are valid within almost all the region 
h < y < L with the exception only of a thin region near the tops of the wall 
protrusions whose contribution to the bulk values of velocity and temperature is 
also practically negligible. Hence we can assume that these laws are valid for 
ally between h and L without introducing a considerable error. In  other words, we 
can assume that 

6, - 4 Y )  = 0, - 61 - e* #l(Y/L), U(Y)  = u1- U*fl(Y/L)  (15) 
for h < y < L, where U, is the mean velocity on the pipe axis and fl(y/L) the 
universal velocity-defect function. Under such assumptions we easily obtain 

(16) 
1 

ub = u1(1-ql)2-2u* 1 (l-q)fl(q)dq? 

39 -2 
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where q1 = h/L is a relative roughness height. For the approximate evaluation of 
the integrals on the right-hand sides of (16) and (17) we can use the fairly accurate 
assumption that the logarithmic form of both defect laws is valid to the pipe 
axis. In  other words, we can in a first approximation use the relationsf,(q) = A lnq 
and q51(r) = a In q (the necessary conditions fi( 1)  = q51( I )  = 0 are here evidently 
valid). If we now replace the integration from q = ql to 7 = 1 on the right-hand 
sides of ( 1 6 )  and (17) by integration from 7 = 0 t o  q = 1, additional errors which 
are of the same order as the already neglected contributions to ub and 0, appear. 
Therefore it is possible to extend the integrals on the right-hand sides of ( 1 6 )  and 
(17) from 0 to 1 without changing appreciably the accuracy of the equations. 
This extension together with the use of a logarithmic approximation to the 
functionsf,(y) and o1(y) leads to the following results: 

Ub = Ul( 1 - 71)'- 1.5Au* (18) 

and 

These two equations imply the relation 

where cf = 2(u*/ub)'. Since #,/(Ow - el) = jw/c,pu~(O, - el) = c,(cf/2)-+, equa- 
tion (1  l )  for ch and equation ( 2 0 )  for the correction factor A lead to an approximate 
equation for ch of the form 

L 
( t c f P  

1.5a + [ 3.5-- (1-q1)2 aA(&f)-&' 
2.25 I 

( 2 1 )  

Ch = 
a ln  - + (b;Pr%-bi) h$ + C+pl- ~ 

h ( 1  -rA2 

In accordance with the considerations presented in $1 we shall suppose that 
A = 2.5, a = 2.12 and /I1 = 0.5. Moreover we shall use ( 1 3 ) ,  which implies that 
bi = 0.55, b; = 0-55 x 0 .2  = 0.11 and C = 9-5. We shall also simplify ( 2 1 )  by 
taking into account the fact that the terms of the denominator of its right-hand 
side containing the factor (&cf)4 prove to be rather small compared with the other 
terms in all ordinary situations. Hence it is justifiable to use a simplified estimate 
of these terms instead of their true values. Let us now note that rl is usually 
small in comparison with 1 and therefore the replacement of (1 - rl)' by 1 in the 
expression for the coefficient of (4cf)* changes this coefficient only slightly. For 
this reason preservation of the factor ( 1 - rl)-2 in the considered expression seems 
quite unjustified. (In the case of a smooth-wall flow the factor (+cf)* is still 
smaller and therefore the term containing this factor was neglected altogether 
in the corresponding equation of the paper by Kader & Yaglom (1972).) Sub- 
stitution of the above-mentioned numerical values of the coefficients entering ( 2 1 )  
and replacement of 2.25/ (  1 - ql)' by the simple constant 2-25 lead to  the following 
result : 

( &cf)4 Re Pr 

2 - 1 2 1 n - + 0 * 5 5 ( P r ~ - 0 . 2 ) h ~ +  lO*O--  +6.6(&)4 
L 3.2 

N u  = C,Re Pr = 

h (1 - Tl)' 
( 2 2 )  
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FIGURE 2. Nu as a function of Re according to Pinkel’s data. Values of the product kNu 
with different k are plotted in order to avoid the mixing of data points. -, proposed 
theoretical equation. Pr = 0.71. 

0 0 n 0 
71 0 0.026 0.0375 0.017 

Range of h, a 5-157 6-207 2-59 
Range of h,, 0 8-242 4-136 1-20 

k 1 2 4 8 

Now we shall compare this result with the data available on Nusselt numbers for 
heat transfer in rough pipes. 

The experimental data suitable for such a comparison can be found in the 
studies by Pinkel (1954), Seleznev (1955, 1956), Nunner (1956), Teverovskii 
(1956, 1958), Dipprey & Sabersky (1963), Kol&i; (1965), Isachenko, Agababov & 
Galin (1965), Galin (1966) and Antuf’ev (1966). The roughness of the internal 
surface of the pipe was established in the corresponding experiments mainly by 
threading the surface, i.e. cutting helical threads of various forms (Pinkel; 
Teverovskii; Koltii;; Galin; Antuf’ev). In  some other cases the surface was 
roughened by circumferential rings (Nunner) or some three-dimensional pro- 
trusions (Selesnev; Nunner; Dipprey & Sabersky). The Prandtl number was 
close to 0.71 in the case of the experiments on heat transfer in air made by Pinkel, 
Seleznev, Nunner, Teverovskii and Antuf’ev, and it was varied from 1.2 to 9 
depending on the temperature in the measurements of Dipprey & Sabersky, 
Isachenko et al. and Galin, who used water as the working fluid. Finally, Koltii: 
used both air and water in his experiments. 
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Re 

FIGURE 3. Nu as a function of Re according to Seleznev’s data, plotted as in figure 2. 
PV = 0.71. 

0 0 0 a 0 v @ e 
71 0 0,028 0.033 0-042 0.053 0.046 0.042 0.043 

Range of h, 0 26-94 34-95 38-131 48-171 53-133 47-124 45-139 
Range of h,, 0 13-48 21-58 19-67 33-118 21-54 28-74 32-100 

k B 1 2 4 8 16 32 64 

A comparison of the measured values of Nu with the values calculated with the 
aid of (22) is shown in figures 2-7 for part of Pinkel’s data (corresponding to 
relatively small temperature differences between wall and fluid) and data of 
Seleznev, Nunner, Teverovskii, Dipprey & Sabersky and Antuf’ev. To be sure 
that the used data relate in fact to completely rough flow conditions, the values 
of the friction coefficient at  high enough Re were used to calculate the height of 
the equivalent (i.e. producing the same friction) sand roughness h,. Then (22) 
was applied only when h,, = h,u,/v 2 100. Unfortunately it was found that 
many of the data refer to transitional flows with h,, < 100. In  an attempt to use 
also the transitional data we evaluated P = P(Pr, h,, cl, C T ~ ,  . . .) for such flows 
by means of linear interpolation between dynamically smooth and dynamically 
completely rough walls. In  other words we used the following equation: 

P = &hs+ Pr + f 1 -#,+I PS (23) 
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FIGURE 4. Nu as a function of Re according to Nunner's data, plotted as in figure 2. 
Pr = 0.71. 

0 0  0 0 a V (D e 
T~ 0 0.016 0.182 0.167 0.164 0.162 0.0805 0.0805 

Rangeof h, 0 2-41 26-701 45-1158 42-1230 37-1020 12-366 14-401 
Rangeof h,, 0 2-41 18-485 190-4900 239-7010 137-4110 38-1160 70-1960 

k 3  1 2 4 8 16 32 64 

where p, is given by equation (13) and p, = 12-5Prf- 6 in accordance with the 
results of Kader & Yaglom (1972). [A similar method of determination of p 
values for transitional flows was used by Chamberlain (1968) but with another 
choice of equations for p,. and p,. Another slightly more complicated method of 
determination of /3 for transitional flows was suggested by Jayatilleke (1969).] 
I n  the rare cases when the value of cf for the transitional flow considered was not 
reported by the author, this value was also determined by linear interpolation 
between smooth and completely rough values of cf. Values of Nu for transitional 
flows calculated from the data on @ and cf in accordance with (4) are also shown 
in figures 2-7. Vertical dotted lines in all the diagrams mark the boundary value 
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FIGURE 5. N u  as a function of Re according to Teverovskii’s data, plotted as in figure 2. 
Pr = 0.71. 

0 0 a 0 V 
71 0.0785 0.0657 0.053 0.0267 0.0201 

Range of h, 82-1257 74-791 72-692 37-259 24-216 
Range of hS+ 7 1- 1080 60-635 62-592 26-181 19-170 
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of Re above which the pipe may be considered completely rough. When the 
experiments considered also included heat transfer measurements in a smooth 
pipe the corresponding values of Nu are also shown in the figures together with 
the theoretical curve implied by (4) with p = p,. These last graphs allow us to 
compare the deviations of the measured values of the Nusselt number for 
rough-wall heat transfer from the corresponding calculated values of N u  with the 
analogous deviations in the case of a smooth pipe. The data of K016?, Isachenko 
et al. and Galin are related to flows with varying Pr and are inconvenient for 
presentation in the form of diagrams similar to those in figures 2-7. Instead, 
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FIGURE 6. Nu as a 
in figure 2. (a)  k = 
(d )  k = 1, v1 = 0. 

function of Re according to Dipprey & Sabersky’s data, plotted as 
loa, v1 = 0.0976. ( b )  k = lo2, T~ = 0.0276. (c) k = 10, vl = 0.0048. 

e 0 8 0 
(4 Pr 5.94 4.38 2.79 1.20 

Range of h, = h,, 65-510 83-695 175-1020 273-2381 

0 La 0 
(6) Pr 5.94 4.38 2.79 1.20 

Range of h, = h,, 23-118 30-166 46-233 49-5 14 

A A A a 
(c) Pr 5.94 4.38 2.79 1.20 

Rangeof h, = h,, 2-16 2-19 3-29 7-60 

(3 0 (D 0 
(4 Pr 5.94 4.38 2.79 1.20 
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FIUURE 7. Nu as a function of Re according t o  Antuf'ev's data, plotted as in figure 2. 
Pr = 0.71. 

0 0 a 0 
71 0.061 0.094 0.094 0.129 

Range of h+ 16-453 28-693 26-692 48-991 
Rango of h,, 12-335 14-350 14-367 21-436 

k 1 2 4 8 

figures 8 and 9 compare directly the corresponding measured values of Nu with 
the Nu calculated using (4), (22) and (23). 

Figures 2-9 show that the agreement of the measured values Nu, of the 
Nusselt number with the corresponding calculated values Nu, is quite satisfactory 
in most cases in spite of the fact that the equations used do not include any 
dependence on the specific features of the roughness. Almost all the deviations 
of Nu, from Nu, do not exceed 10 %. Hence on the whole these figures coniirm 
the applicability of the derived equations to the description of turbulent heat 
and mass transfer at rough walls for a wide range of roughness types and the 
values of h, and Pr. 

The data of Seleznev (for several types of three-dimensional pyramidal rough- 
ness) show somewhat worse agreement with the calculation than most of the 
other data, but they related almost entirely to transitional flows and are in 
general exceptional in some senses. The data of Galin are especially scattered. 
This may be partially explained by the fact that the experiments on heat transfer 
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FIGURE 8. Comparison of measured vaIues Nu, of Nu with calculated values Nu, for 
KolBF’s data. -, perfect agreement; - - -, 10 yo deviation. Pr = 0-71 or 3. 

0 0 A 
71 0 0.0394 0.074 0.109 

Range of h+ 0 10-209 14-470 26-766 
Range of h,, 0 8-172 13-468 30-864 

in liquids are considerably more complicated than those on heat transfer in air, 
which was studied in most of the other sources used. In  fact the temperature 
variations over the protrusion surfaces and the related variability of Pr in the 
proximity of the wall may influence significantly heat tranfser in the case of 
a liquid flow but they are quite unimportant in the case of an air flow. Let us 
note in this connexion that Galin’s data are uncorrected while KolM (1965) 
introduced some crude approximate corrections for these effects in his water 
heat transfer data related to similar type of roughness. These corrections changed 
KolWs data noticeably and led to a marked decrease of scatter in figure 8. 
Finally, the systematic departure from the calculation of most of Nunner’s 
data for pipes with relatively sparse internal rings may indicate the non- 
universality of (13) and the dependence of /? on wall geometry. It is worth 
mentioning in this connexion that the data related to the quite sparsely spaced 
roughness anyhow show quite evidently that (13) cannot be applied in all cases 
(see, for example the data of Webb, Eckert & Goldstein (1971) on heat transfer 
in pipes with repeated-rib roughness). 

The dependence of /3 on the Prandtl number suggested by (1 3) needs of course 
an additional careful verification using data related to much greater values of Pr. 
The first results on turbulent heat and mass transfer a t  rough surfaces a t  high 
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FIGURE 9. Comparison of measured values Nu, of Nu with calculated values Nu, for the 

deviation. Pr varies from 6 to 9. 
data of Isachenko et al. (1965) and Galin (1966). - , perfect agreement; - - - , 15% 

0 0 0 a 0 V 0 

91 0 0.712 0.2 18 0.125 0.878 0.055 0.011 
Range of h+ 0 26-413 14-104 12-67 30-957 17-457 3-80 
Range of h,+ 0 17-275 9-68 6-33 16-509 7-195 5-115 

Prandtl number were published recently by Smith & Gowen (1965), Watson & 
Thomas (1967)) Dawson & Trass (1972) and a few others. However, all the corre- 
sponding data are insufficiently full, refer to some specific conditions and do not 
allow a comparison with the equations proposed in our paper. 

In  conclusion let us consider the question of the double role of roughness in 
heat and mass transfer. It is usually supposed that turbulent heat and mass 
transfer is augmented by wall roughness in all the cases. However, we have 
already mentioned a t  the end of 3 2 that heat and mass transfer a t  a rough wall 
should be weaker than a t  a smooth wall a t  the same values of Re and Pr according 
to  the derived equations if Re is high enough. The point is that although the wall 
protrusions cause additional disturbances of the flow intensifying the transfer 
they also decelerate the flow near a wall. This deceleration causes reduction of 
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heat and mass transfer and according to (1 1) and (22) it should even outweigh 
the intensifying effect of the additional disturbances if Re is very high. Careful 
inspection of Nunner’s data, presented in figure 4, for a wide range of Re and h, 
values shows that in fact the slopes of the plotted rough-pipe curves exceed 
essentially the slope of the lowest smooth-pipe curve at  not too high values of 
Re, but this difference of slopes decreases gradually with increasing Re. Moreover, 
in some cases the curves for rough pipes turn out to be even more slowly increasing 
than the curve for a smooth pipe at the greatest values of Re considered. Exactly 
the same effect can be noticed in some other graphs presented above, for example, 
in figure 6, illustrating Dipprey & Sabersky’s data. It is very clearly evident also 
in some heat transfer diagrams of the paper by Isachenko et al. (1965). Especially 
expressive data were obtained by the last-mentioned authors in an annular water 
channel between two coaxial cylinders with a rough internal wall and a 
smooth external wall. It is clear that the equations above cannot be applied 
explicitly to heat transfer calculations for annular channels, but the qualitative 
reasons presented explain also the effect found (i.e. an essential excess of the 
rough-wall Nusselt number Nu, over the corresponding smooth-wall value Nu, 
at moderate Re which transforms into the opposite inequality Nu, < Nu, a t  
higher values of Re). A similar trend is noticeable in the graphs of Watson & 
Thomas (1967) and Dawson & Trass (1972) concerning the mass transfer of ions 
in electrolyte-water solutions (Pr of the order of several thousand). Here also 
at low and moderate values of Re the wall roughness caused an increase of the 
slope of the ch us. Re curve as compared with the value of the slope in the case of 
a smooth-wall flow; but at high values of Re the slope for a rough-wall flow was 
found to be even smaller than that for the case of a smooth wall. Finally, some 
of the figures included in the survey paper by Bergles (1969) are also qualitatively 
similar to those of Isachenko et al. (1965), Watson & Thomas (1967) and Dawson 
& Trass (1972). Thus the general conclusions on the possible deterioration of 
heat and mass transfer by the wall roughness at high enough Re (especially in 
the case of high Pr) implied by (11) and (22) are qualitatively confirmed by the 
available experimental data. However; reliable quantitative verification of this 
effect still requires special careful measurements of heat and mass transfer in 
rough- and smooth-walls flows at very high values of Re and Pr. 
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